We obtained convergence rates of the collocation approximation by deep ReLU neural networks of the solution $u$ to elliptic PDEs with lognormal inputs, parametrized by $\boldsymbol{y}$ from the non-compact set $\mathbb{R}^\infty$. The approximation error is measured in the norm of the Bochner space $L_2(\mathbb{R}^\infty, V, \gamma)$, where $\gamma$ is the infinite tensor product standard Gaussian probability measure on $\mathbb{R}^\infty$ and $V$ is the energy space. We also obtained similar results for the case when the lognormal inputs are parametrized on $\mathbb{R}^M$ with very large dimension $M$, and the approximation error is measured in the $\sqrt{g_M}$-weighted uniform norm of the Bochner space $L_\infty^{\sqrt{g}}(\mathbb{R}^M, V)$, where $g_M$ is the density function of the standard Gaussian probability measure on $\mathbb{R}^M$.
翻译:我们通过深 ReLU 神经网络获得了同位近似值的趋同率率, 溶液的共合点近似值由深ReLU 神经网络通过深ReLU 神经网络获得, 溶液的合差率为美元对顺数输入的椭圆式 PDEs 的多元 数方标准 Gausian 概率测量值为$mathbb{R ⁇ ⁇ infty} 美元, 和 $V$为能源空间。 当对正数输入的正数对齐值为$\mathbb{R ⁇ M$和非常大尺寸的美元时, 近似差值根据Bochner 空间的美元加权统一规范测量值为$@sqrt{g_g_sqrt{g} 无限的 数方标准 度测量值为$mathbb{R{M}, 和 Vma_ma_m} 美元标准度值的数值, 我们也取得了类似的结果。