We introduce the Gram-Hadamard Density Operator (GHDO), a new deep neural-network architecture that can encode positive semi-definite density operators of exponential rank with polynomial resources. We then show how to embed an autoregressive structure in the GHDO to allow direct sampling of the probability distribution. These properties are especially important when representing and variationally optimizing the mixed quantum state of a system interacting with an environment. Finally, we benchmark this architecture by simulating the steady state of the dissipative transverse-field Ising model. Estimating local observables and the R\'enyi entropy, we show significant improvements over previous state-of-the-art variational approaches.
翻译:我们引入了Gram-Hadamard密度操作器(GHDO),这是一个新的深层神经网络结构,可以用多元资源将指数级的正半确定密度操作器编码成正半确定密度操作器。然后我们展示如何在GHDO中嵌入自动递减结构,以便直接取样概率分布。这些属性在代表并变式优化与环境互动的系统混合量子状态时尤为重要。最后,我们通过模拟消散的横跨场Ising模型的稳步状态来衡量这一结构。估计当地观测和R\'enyi entropy,我们展示了以往最先进的变异方法的显著改进。