Approximate Message Passing (AMP) algorithms provide a valuable tool for studying mean-field approximations and dynamics in a variety of applications. Although usually derived for matrices having independent Gaussian entries or satisfying rotational invariance in law, their state evolution characterizations are expected to hold over larger universality classes of random matrix ensembles. We develop several new results on AMP universality. For AMP algorithms tailored to independent Gaussian entries, we show that their state evolutions hold over broadly defined generalized Wigner and white noise ensembles, including matrices with heavy-tailed entries and heterogeneous entrywise variances that may arise in data applications. For AMP algorithms tailored to rotational invariance in law, we show that their state evolutions hold over matrix ensembles whose eigenvector bases satisfy only sign and permutation invariances, including sensing matrices composed of subsampled Hadamard or Fourier transforms and diagonal operators. We establish these results via a simplified moment-method proof, reducing AMP universality to the study of products of random matrices and diagonal tensors along a tensor network. As a by-product of our analyses, we show that the aforementioned matrix ensembles satisfy a notion of asymptotic freeness with respect to such tensor networks, which parallels usual definitions of freeness for traces of matrix products.
翻译:近似信息传递( AMP) 算法为研究各种应用中的平均近似值和动态提供了宝贵的工具。 虽然通常为独立高斯条目或满足法律中轮换性差异的矩阵推导出, 但它们的状态进化特性预期会维持在随机矩阵组合的更大的普遍性类别之上。 我们开发了关于 AMP 普遍性的几项新结果。 对于为独立高斯条目定制的AMP 算法, 我们显示, 它们的状态演化维持在广泛定义的通用信号和白色噪音组合之上, 包括数据应用中可能出现的重零售条目和不同切入差异的矩阵。 对于为法律中轮换性变化而定制的 AMP 算法, 我们显示它们的状况演化会维持在更大的矩阵群中, 这些矩阵只满足了符号和变异性。 包括由亚达马德或四更变变异体和二变体操作者组成的遥感矩阵。 我们通过一个简化的瞬间证据来建立这些结果, 降低AMP 普遍性, 研究随机矩阵和变形变形变体的产产品, 并显示我们平坦的矩阵网络 。