We recently proposed a robust effect size index (RESI) that is related to the non-centrality parameter of a test statistic. RESI is advantageous over common indices because (1) it is widely applicable to many types of data; (2) it can rely on a robust covariance estimate; (3) it can accommodate the existence of nuisance parameters. We provided a consistent estimator for the RESI, however, there is no established confidence interval (CI) estimation procedure for the RESI. Here, we use statistical theory and simulations to evaluate several CI estimation procedures for three estimators of the RESI. Our findings show (1) in contrast to common effect sizes, the robust estimator is consistent for the true effect size; (2) common CI procedures for effect sizes that are non-centrality parameters fail to cover the true effect size at the nominal level. Using the robust estimator along with the proposed bootstrap CI is generally accurate and applicable to conduct consistent estimation and valid inference for the RESI, especially when model assumptions may be violated. Based on the RESI, we propose a general framework for the analysis of effect size (ANOES), such that effect sizes and confidence intervals can be easily reported in an analysis of variance (ANOVA) table format for a wide range of models


翻译:最近,我们提出了与测试统计数据的非中央化参数有关的稳健效应规模指数(RESI),该指数与测试性统计的非中央化参数有关,它比共同指数有利,因为:(1) 该指数广泛适用于许多类型的数据;(2) 该指数可以依赖稳健的共变估计;(3) 该指数能够容纳骚扰性参数的存在;(3) 该指数可以容纳骚扰性参数的存在;然而,我们为RESI提供了一个一致的估算值。我们为RESI提供了一个一致的估算值(CI)估算程序。在这里,我们使用统计理论和模拟来评价三个RESI估计者的若干CI估算程序。我们的调查结果显示:(1) 与通用效应大小不同,强健健的估算值与真实效应大小一致;(2) 非中央化参数影响大小的通用CI程序无法涵盖名义上的真正影响大小。使用稳健的估算值与拟议的靴带CI一般是准确的,适用于对RESI进行一致的估算和合理推算,特别是当模型假设可能被违反时。我们根据RESI,我们提出的结果显示:(1) 强的估算值估计值与共同效应大小相对,强的估算值估计值与实际影响大小一致;(2) 非集中度参数的通用的光度估计法(AESAAAA)可轻易地分析模型。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
161+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Arxiv
0+阅读 · 2022年1月14日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
4+阅读 · 2018年1月15日
Arxiv
3+阅读 · 2014年10月9日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员