The key elements of seismic probabilistic risk assessment studies are the fragility curves which express the probabilities of failure of structures conditional to a seismic intensity measure. A multitude of procedures is currently available to estimate these curves. For modeling-based approaches which may involve complex and expensive numerical models, the main challenge is to optimize the calls to the numerical codes to reduce the estimation costs. Adaptive techniques can be used for this purpose, but in doing so, taking into account the uncertainties of the estimates (via confidence intervals or ellipsoids related to the size of the samples used) is an arduous task because the samples are no longer independent and possibly not identically distributed. The main contribution of this work is to deal with this question in a mathematical and rigorous way. To this end, we propose and implement an active learning methodology based on adaptive importance sampling for parametric estimations of fragility curves. We prove some theoretical properties (consistency and asymptotic normality) for the estimator of interest. Moreover, we give a convergence criterion in order to use asymptotic confidence ellipsoids. Finally, the performances of the methodology are evaluated on analytical and industrial test cases of increasing complexity.


翻译:地震概率风险评估研究的关键要素是显示以地震强度测量为条件的结构失灵概率的脆弱性曲线,表明以地震强度测量为条件的结构失灵概率的脆弱曲线。目前有许多程序可以对这些曲线进行估计。对于可能涉及复杂和昂贵数字模型的建模方法,主要挑战是优化对数字代码的号召,以减少估算成本。为此目的可以使用适应技术,但这样做时,考虑到估算的不确定性(通过信任间隔或与所用样品大小有关的粒子)是一项艰巨的任务,因为样本不再独立,而且可能分布不完全相同。这项工作的主要贡献是以数学和严格的方式处理这一问题。为此目的,我们提议并执行一项以适应重要性抽样为基础的积极学习方法,用于脆弱性曲线的参数估计。我们证明,对估计利息者来说,有一些理论特性(一致性和惯性正常性)。此外,我们给出一个趋同标准,以便使用抑制性信心的粒子分布。最后,对方法的性能进行了数学和严格的分析,对分析案例进行了评估。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
51+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
23+阅读 · 2022年2月24日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员