We develop entropy dissipative higher order accurate local discontinuous Galerkin (LDG) discretizations coupled with Diagonally Implicit Runge-Kutta (DIRK) methods for nonlinear degenerate parabolic equations with a gradient flow structure. Using the simple alternating numerical flux, we construct DIRK-LDG discretizations that combine the advantages of higher order accuracy, entropy dissipation and proper long-time behavior. The implicit time-discrete methods greatly alleviate the time-step restrictions needed for the stability of the numerical discretizations. Also, the larger time step significantly improves computational efficiency. We theoretically prove the unconditional entropy dissipation of the implicit Euler-LDG discretization. Next, in order to ensure the positivity of the numerical solution, we use the Karush-Kuhn-Tucker (KKT) limiter, which couples the positivity inequality constraint with higher order accurate DIRK-LDG discretizations using Lagrange multipliers. In addition, mass conservation of the positivity-limited solution is ensured by imposing a mass conservation equality constraint to the KKT equations. The unique solvability and unconditional entropy dissipation for an implicit first order accurate in time, but higher order accurate in space, KKT-LDG discretizations are proved, which provides a first theoretical analysis of the KKT limiter. Finally, numerical results demonstrate the higher order accuracy and entropy dissipation of the KKT-DIRK-LDG discretizations for problems requiring a positivity limiter.
翻译:我们开发了不连续的本地 Galerkin (LDG) 离散, 并配有直径不连续的 Onderge- Kutta (DIRK) 方法。 我们用简单的交替数字通量, 构建 DIRK- LDG 离散, 结合了更高顺序准确性、 加密消散和适当的长期行为的优点。 隐含的时间分解方法大大缓解了数字离散稳定性所需的时间限制。 此外, 更大的时间步骤大大提高了计算效率。 我们理论上证明, 隐含的 Euler- LDG 离散性对非线性腐蚀性变异式的分解方法。 其次, 为了确保数字解决方案的假设性, 我们使用 Karush- Kuhn- Tucker (KKT) 限制, 将假设性不平等性约束与更精确的 DIRK- LDG 离散性使用 Lagrange 乘数。 此外, 大规模保存但有限性解决方案提高了计算效率。 我们从理论上证明默认的 Eulner- LDL 的精确性定序, 的精确性对QKT 进行精确性分析。