In this paper, the fused graphical lasso (FGL) method is used to estimate multiple precision matrices from multiple populations simultaneously. The lasso penalty in the FGL model is a restraint on sparsity of precision matrices, and a moderate penalty on the two precision matrices from distinct groups restrains the similar structure across multiple groups. In high-dimensional settings, an oracle inequality is provided for FGL estimators, which is necessary to establish the central limit law. We not only focus on point estimation of a precision matrix, but also work on hypothesis testing for a linear combination of the entries of multiple precision matrices. Inspired by Jankova a and van de Geer [confidence intervals for high-dimensional inverse covariance estimation, Electron. J. Stat. 9(1) (2015) 1205-1229.], who investigated a de-biasing technology to obtain a new consistent estimator with known distribution for implementing the statistical inference, we extend the statistical inference problem to multiple populations, and propose the de-biasing FGL estimators. The corresponding asymptotic property of de-biasing FGL estimators is provided. A simulation study shows that the proposed test works well in high-dimensional situations.
翻译:在本文中,使用引信图形拉索(FGL)方法来同时估计多个人群的多精密矩阵。 FGL模型中的拉索惩罚是限制精确矩阵的宽度,而不同群体对两个精密矩阵的中度惩罚则是限制多个群体类似结构。在高维环境中,为FGL测算器提供了一种甲骨文不平等,这对于确定中央限值法是必要的。我们不仅侧重于精确矩阵的点估计,而且致力于对多个精确矩阵条目的线性组合进行假设测试。由Jankova a 和van de Geer(高度反逆异度估计的置信间隔)和van de Geer(Eplon. J. Stat. 9(1) (2015) 1205-1229. ) 所启发,后者调查了一种偏差技术,以获得一个新的一致的测算器,以已知的分布方式实施统计推算法。我们不仅将统计推论问题扩大到多个人群,而且还建议对多精准矩阵条目的直线性组合进行假设测试。相应的测测测算结果显示了高度的模拟状态。</s>