Continual learning (CL) aims to learn a sequence of tasks over time, with data distributions shifting from one task to another. When training on new task data, data representations from old tasks may drift. Some negative representation drift can result in catastrophic forgetting, by causing the locally learned class prototypes and data representations to correlate poorly across tasks. To mitigate such representation drift, we propose a method that finds global prototypes to guide the learning, and learns data representations with the regularization of the self-supervised information. Specifically, for NLP tasks, we formulate each task in a masked language modeling style, and learn the task via a neighbor attention mechanism over a pre-trained language model. Experimental results show that our proposed method can learn fairly consistent representations with less representation drift, and significantly reduce catastrophic forgetting in CL without resampling data from past tasks.


翻译:---- 连续学习(CL)旨在随着数据分布从一个任务转移到另一个任务的时间,学习一系列任务。当训练新任务数据时,旧任务数据的数据表征可能会漂移。一些消极的表征漂移可能会导致灾难性遗忘,因为会导致本地学习到的类原型和数据表征在任务之间关联很差。为了缓解这种表征漂移,我们提出了一种方法,找到全局原型来指导学习,并使用自监督信息的正则化来学习数据表征。具体地,在NLP任务中,我们以掩码语言建模的方式构造每个任务,并通过一个预训练语言模型上的邻居注意机制来学习任务。实验结果表明,我们的方法可以学习出较为一致的表征,并且在CL中显著减少灾难性遗忘而不需要重新对过去的任务数据进行取样。

0
下载
关闭预览

相关内容

「连续学习Continual learning, CL」最新2022研究综述
专知会员服务
83+阅读 · 2022年6月26日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月18日
Multi-Domain Multi-Task Rehearsal for Lifelong Learning
Arxiv
12+阅读 · 2020年12月14日
Arxiv
13+阅读 · 2020年4月12日
Arxiv
19+阅读 · 2018年3月28日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关VIP内容
「连续学习Continual learning, CL」最新2022研究综述
专知会员服务
83+阅读 · 2022年6月26日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员