\#P-hardness of computing matrix immanants are proved for each member of a broad class of shapes and restricted sets of matrices. We prove \#P-hardness of computing $\lambda$-immanants of $0$-$1$ matrices when $\lambda$ has a large domino-tilable part and satisfying some technical conditions. We also give hardness proofs of some $\lambda$-immanants of weighted adjacency matrices of planarly drawable directed graphs, such that the shape $\lambda = (\mathbf{1}+\lambda_d)$ has size $n$ such that $|\lambda_d| = n^{\varepsilon}$ for some $0<\varepsilon<\frac{1}{2}$, and for some $w$, the shape $\lambda_d/(w)$ is tilable with $1\times 2$ dominos.


翻译:证明了在一类广泛的形状和受限制的矩阵集中,计算矩阵因子式的#P难度。我们证明了当$\lambda$具有大型多米诺可铺砌部分且满足一些技术条件时,计算$0$-$1$矩阵的$\lambda$-因子式的#P难度。我们还给出了一些$\lambda$-因子式的难度证明,这些因子式适用于可平面绘制的有向图的带权邻接矩阵,其中形状$\lambda=(\mathbf{1}+\lambda_d)$的大小为$n$,使得$|\lambda_d|=n^{\varepsilon}$,其中$0<\varepsilon<\frac{1}{2}$,并且对于某些$w$,形状$\lambda_d/(w)$可用$1\times 2$多米诺骨牌铺平。

0
下载
关闭预览

相关内容

【硬核书】稀疏多项式优化:理论与实践,220页pdf
专知会员服务
67+阅读 · 2022年9月30日
南大《优化方法 (Optimization Methods》课程,推荐!
专知会员服务
78+阅读 · 2022年4月3日
【硬核书】矩阵代数基础,248页pdf
专知会员服务
83+阅读 · 2021年12月9日
【硬核书】树与网络上的概率,716页pdf
专知会员服务
72+阅读 · 2021年12月8日
专知会员服务
50+阅读 · 2020年12月14日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
自然语言处理 (三) 之 word embedding
DeepLearning中文论坛
19+阅读 · 2015年8月3日
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月26日
VIP会员
相关VIP内容
【硬核书】稀疏多项式优化:理论与实践,220页pdf
专知会员服务
67+阅读 · 2022年9月30日
南大《优化方法 (Optimization Methods》课程,推荐!
专知会员服务
78+阅读 · 2022年4月3日
【硬核书】矩阵代数基础,248页pdf
专知会员服务
83+阅读 · 2021年12月9日
【硬核书】树与网络上的概率,716页pdf
专知会员服务
72+阅读 · 2021年12月8日
专知会员服务
50+阅读 · 2020年12月14日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
自然语言处理 (三) 之 word embedding
DeepLearning中文论坛
19+阅读 · 2015年8月3日
相关基金
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员