In this work we present a fast, globally convergent, iterative algorithm for computing the asymptotically stable states of nonlinear large--scale systems of quadratic autonomous Ordinary Differential Equations (ODEs) modeling, e.g., the dynamic of complex chemical reaction networks. Towards this aim, we reformulate the problem as a box--constrained optimization problem where the roots of a set of nonlinear equations need to be determined. Then, we propose to use a projected Newton's approach combined with a gradient descent algorithm so that every limit point of the sequence generated by the overall algorithm is a stationary point. More importantly, we suggest replacing the standard orthogonal projector with a novel operator that ensures the final solution to satisfy the box constraints while lowering the probability that the intermediate points reached at each iteration belong to the boundary of the box where the Jacobian of the objective function may be singular. The effectiveness of the proposed approach is shown in a practical scenario concerning a chemical reaction network modeling the signaling network of colorectal cancer cells. Specifically, in this scenario the proposed algorithm is proven to be faster and more accurate than a classical dynamical approach where the asymptotically stable states are computed as the limit points of the flux of the Cauchy problem associated with the ODEs system.
翻译:在这项工作中,我们提出了一个快速的、全球趋同的、迭接的算法,用于计算非线性大型四级自主普通差异等量(ODEs)模型的无线性大规模大规模系统(ODEs)的无线性稳定状态,例如复杂化学反应网络的动态。为了实现这一目标,我们重新将问题改写为一个受箱式制约的优化问题,因为需要确定一组非线性方程的根源。然后,我们提议使用一个预测的牛顿方法,加上一个梯度下行算法,使整个算法产生的序列的每个极限点都是固定点。更重要的是,我们建议用一个新操作器取代标准正方形的正方形投影投影仪,以确保满足框限制的最终解决方案,同时降低每个迭代中点属于一个框的边界的概率,而该框中位的一组非线性方等方方方方方方方方程式的根可能很独特。我们提议的办法的有效性体现在一个实际假设中,即一个化学反应网络模型,用以模拟显示色直截断细胞细胞网络的信号网络。具体地说,在这个假设中,拟议的算法中,即以更精确、更精确地、更精确地推算法将一个稳定、更精确地推算法系地推算法,其为稳定的、更精确地推算法将一个稳定的、更精确地推算法将一个稳定的、更精确地推算为稳定的、更精确地推算方法将一个稳定的、更精确地推算为稳定的、更精确地推算法。