Let F be the quotient of an analytic function with a product of linear functions. Working in the framework of analytic combinatorics in several variables, we compute asymptotic formulae for the Taylor coefficients of F using multivariate residues and saddle-point approximations. Because the singular set of F is the union of hyperplanes, we are able to make explicit the topological decompositions which arise in the multivariate singularity analysis. In addition to effective and explicit asymptotic results, we provide the first results on transitions between different asymptotic regimes, and provide the first software package to verify and compute asymptotics in non-smooth cases of analytic combinatorics in several variables. It is also our hope that this paper will serve as an entry to the more advanced corners of analytic combinatorics in several variables for combinatorialists.
翻译:让 F 成为具有线性函数产物的分析函数的商数。 在多个变量的分析组合法框架内, 我们使用多变量残渣和马鞍点近似值, 计算F 的泰勒系数。 由于单数F 组是高空的组合, 我们能够将多变量单数单数分析中产生的地形分解状态明确化。 除了有效且清晰的单数分析结果外, 我们提供不同单数系统之间过渡的初步结果, 并提供第一个软件包, 以核实和计算数个变量中非摩特的解析交响器的泰勒系数。 我们还希望, 这张纸能成为数个组合学家变量中更先进的解析调调器角的入口 。