The dynamic Schr\"odinger bridge problem provides an appealing setting for solving optimal transport problems by learning non-linear diffusion processes using efficient iterative solvers. Recent works have demonstrated state-of-the-art results (eg. in modelling single-cell embryo RNA sequences or sampling from complex posteriors) but are limited to learning bridges with only initial and terminal constraints. Our work extends this paradigm by proposing the Iterative Smoothing Bridge (ISB). We integrate Bayesian filtering and optimal control into learning the diffusion process, enabling constrained stochastic processes governed by sparse observations at intermediate stages and terminal constraints. We assess the effectiveness of our method on synthetic and real-world data and show that the ISB generalises well to high-dimensional data, is computationally efficient, and provides accurate estimates of the marginals at intermediate and terminal times.
翻译:动态的Schr\'odinger桥问题为解决最佳运输问题提供了一个有吸引力的环境,它利用高效的迭代求解器学习非线性扩散过程,从而解决了最佳运输问题。最近的工作显示了最先进的结果(例如模拟单细胞胚胎RNA序列或从复杂的子孙取样),但仅限于学习只有初始和终端限制的桥梁。我们的工作扩大了这一范式,提出了循环式滑动桥(ISB ) 。我们把贝叶斯人的过滤和最佳控制融入了扩散过程的学习之中,从而得以在中间阶段和终端限制的观测中进行有限的随机过程。我们评估了我们在合成和真实世界数据上的方法的有效性,并表明ISB对高维数据作了很好的概括,具有计算效率,并且提供了中间和终端时间边缘的准确估计。