Fundamentally, super-resolution is ill-posed problem because a low-resolution image can be obtained from many high-resolution images. Recent studies for super-resolution cannot create diverse super-resolution images. Although SRFlow tried to account for ill-posed nature of the super-resolution by predicting multiple high-resolution images given a low-resolution image, there is room to improve the diversity and visual quality. In this paper, we propose Noise Conditional flow model for Super-Resolution, NCSR, which increases the visual quality and diversity of images through noise conditional layer. To learn more diverse data distribution, we add noise to training data. However, low-quality images are resulted from adding noise. We propose the noise conditional layer to overcome this phenomenon. The noise conditional layer makes our model generate more diverse images with higher visual quality than other works. Furthermore, we show that this layer can overcome data distribution mismatch, a problem that arises in normalizing flow models. With these benefits, NCSR outperforms baseline in diversity and visual quality and achieves better visual quality than traditional GAN-based models. We also get outperformed scores at NTIRE 2021 challenge.
翻译:从根本上说,超级分辨率是一个问题,因为可以从许多高分辨率图像中获取低分辨率图像。最近对超级分辨率的研究无法产生多种超分辨率图像。尽管SRFlow试图通过预测多高分辨率图像,从而说明超分辨率图像的错误性质,但有改进多样性和视觉质量的余地。在本文中,我们提议为超级分辨率、NCSR提供噪音条件流模型,通过噪音条件层提高图像的视觉质量和多样性。为了学习更多样化的数据分布,我们在培训数据中添加噪音。然而,低质量图像是增加噪音的结果。我们提议使用噪声条件层来克服这一现象。噪音条件层使我们的模型产生比其他作品更具有视觉质量的更多样化图像。此外,我们表明这一层可以克服数据分布不匹配的问题,这是在正常流模型中产生的一个问题。有了这些好处,NCSR在多样性和视觉质量上超过了基线,并且比传统的GAN模型取得更好的视觉质量。我们还在2021年的NTIRE中取得了超过分数的挑战。