Several common dual quaternion functions, such as the power function, the magnitude function, the $2$-norm function and the $k$th largest eigenvalue of a dual quaternion Hermitian matrix, are standard dual quaternion functions, i.e., the standard parts of their function values depend upon only the standard parts of their dual quaternion variables. Furthermore, the sum, product, minimum, maximum and composite functions of two standard dual functions, the logarithm and the exponential of standard unit dual quaternion functions, are still standard dual quaternion functions. On the other hand, the dual quaternion optimization problem, where objective and constraint function values are dual numbers but variables are dual quaternions, naturally arises from applications. We show that to solve an equality constrained dual quaternion optimization problem, we only need to solve two quaternion optimization problems. If the involved dual quaternion functions are all standard, the optimization problem is called a standard dual quaternion optimization problem, and some better results hold. Then, we show that the dual quaternion optimization problems arising from the hand-eye calibration problem are equality constrained standard dual quaternion optimization problems.
翻译:多个共同的双四制函数,如权力功能、 数量函数、 $2 向量函数 和 $k$th 最大的双四制函数,是标准的双四制函数,即其函数的标准部分仅取决于其双四制变量的标准部分。此外, 两种标准的双四制函数的对数、 产品、 最小值、 最大值 和复合功能, 即对数和标准单位双四制函数的指数, 仍然是标准的双四制函数。 另一方面, 双四制优化问题, 其目标值和约束函数是双重四制, 但变量是双四制, 自然产生于各种应用。 我们表明, 要解决一个受平等制约的双四制优化问题, 我们只需要解决两个双制优化问题。 如果两个双制的对数功能都是标准的, 最优化问题被称为标准的双制化问题, 以及一些更好的结果。 然后, 我们显示, 双制模制问题是双制。