This paper presents some results on the maximum likelihood (ML) estimation from incomplete data. Finite sample properties of conditional observed information matrices are established. They possess positive definiteness and the same Loewner partial ordering as the expected information matrices do. An explicit form of the observed Fisher information (OFI) is derived for the calculation of standard errors of the ML estimates. It simplifies Louis (1982) general formula for the OFI matrix. To prevent from getting an incorrect inverse of the OFI matrix, which may be attributed by the lack of sparsity and large size of the matrix, a monotone convergent recursive equation for the inverse matrix is developed which in turn generalizes the algorithm of Hero and Fessler (1994) for the Cram\'er-Rao lower bound. To improve the estimation, in particular when applying repeated sampling to incomplete data, a robust M-estimator is introduced. A closed form sandwich estimator of covariance matrix is proposed to provide the standard errors of the M-estimator. By the resulting loss of information presented in finite-sample incomplete data, the sandwich estimator produces smaller standard errors for the M-estimator than the ML estimates. In the case of complete information or absence of re-sampling, the M-estimator coincides with the ML estimates. Application to parameter estimation of a regime switching conditional Markov jump process is discussed to verify the results. The simulation study confirms the accuracy and asymptotic properties of the M-estimator.


翻译:本文从不完整的数据中介绍了最大可能性(ML)估算的一些结果; 确定了有条件观察到的信息矩阵的精度样本属性; 具有肯定性, 与预期的信息矩阵一样, Loewner 部分排序也与预期的信息矩阵相同。 为计算ML估计数的标准误差,将观察到的Fisher信息的明显形式(OFI)用于计算标准误差; 简化了OFI矩阵的Louis(1982年)通用公式; 为防止获得不正确的OFI矩阵的反差, 这可能是由于缺乏松散和矩阵大尺寸造成的, 开发了一个单调的反向矩阵复现公式, 反过来又将Hero和Fessler(1994年)的算法普遍化为Cram\'er-Rao较低约束的偏差值。 为了改进估算, 特别是在对不完整数据进行反复抽样时, 引入了坚固的 M 估测数据。 提议对调控矩阵的封闭表格三明治估测算仪提供了M- 测算仪的标准误差。 由此导致在缩缩缩不全数据中提供的信息丢失, 将Sandbsimestimestimestal- Lestestimestermatistration 校验算结果作为标准的标定结果。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月16日
Arxiv
0+阅读 · 2022年9月15日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员