The zero-error capacity of a classical channel is a parameter of its confusability graph, and is equal to the minimum of the values of graph parameters that are additive under the disjoint union, multiplicative under the strong product, monotone under homomorphisms between the complements, and normalized. We show that any such function either has uncountably many extensions to noncommutative graphs with similar properties, or no such extensions at all. More precisely, we find that every extension has an exponent that characterizes its values on the confusability graphs of identity quantum channels, and the set of admissible exponents is either an unbounded subinterval of $[1,\infty)$ or empty. In particular, the set of admissible exponents for the Lov\'asz number, the projective rank, and the fractional Haemers bound over the complex numbers are maximal, while the fractional clique cover number does not have any extensions.
翻译:古典频道的零度能力是其模糊图的一个参数,它等于在断裂组合下添加的、在强产下倍增的、在配方和正常化之间均态化的单色内单色的图形参数的最小值。 我们显示,任何这样的函数都具有不可估量的多个具有类似属性的非混合图的延伸,或者根本没有任何此类扩展。 更确切地说,我们发现,每个扩展都有其数值在身份量子频道的共性图中具有特征的缩写,而一套可接受指数要么是$[$11\ infty] 或空的无约束的次interval。 特别是, Lov\'asz 编号、 投影级和受复杂数字约束的分形海默斯的一套可接受引号是最大化的, 而分形分类覆盖数则没有任何扩展。