Humans coordinate the abundant degrees of freedom (DoFs) of hands to dexterously perform tasks in everyday life. We imitate human strategies to advance the dexterity of multi-DoF robotic hands. Specifically, we enable a robot hand to grasp multiple objects by exploiting its kinematic redundancy, referring to all its controllable DoFs. We propose a human-like grasp synthesis algorithm to generate grasps using pairwise contacts on arbitrary opposing hand surface regions, no longer limited to fingertips or hand inner surface. To model the available space of the hand for grasp, we construct a reachability map, consisting of reachable spaces of all finger phalanges and the palm. It guides the formulation of a constrained optimization problem, solving for feasible and stable grasps. We formulate an iterative process to empower robotic hands to grasp multiple objects in sequence. Moreover, we propose a kinematic efficiency metric and an associated strategy to facilitate exploiting kinematic redundancy. We validated our approaches by generating grasps of single and multiple objects using various hand surface regions. Such grasps can be successfully replicated on a real robotic hand.


翻译:人类通过协调手的大量自由度(DoFs)在日常生活中灵巧执行任务。我们模仿人类的策略来提高多自由度机器人手的灵巧性。具体而言,我们利用机器人手的运动冗余性,即所有其可控的DoFs,使机器人手能够抓取多个物体。我们提出了一种类人的抓握合成算法,利用任意相对手表面区域的成对接触生成抓握,不再局限于指尖或手内表面。为了建模手的可用抓握空间,我们构建了一个可达性图,包括所有手指骨节和手掌的可达空间。它指导了一个有约束的优化问题的制定,解决了可行且稳定的抓握。我们提出了一个迭代过程,使机器人手能够按顺序抓取多个物体。此外,我们提出了一种运动效率指标及其相关策略,以方便利用运动冗余性。我们通过使用各种手表面区域生成单个和多个物体的抓握来验证了我们的方法。这样的抓握可以在真实机器人手上成功复制。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
德先生
53+阅读 · 2019年4月28日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月17日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员