We consider the inverse medium scattering of reconstructing the medium contrast using Born data, including the full aperture, limited-aperture, and multi-frequency data. We propose a class of data-driven basis for these inverse problems based on the generalized prolate spheroidal wave functions and related eigenfunctions. Such data-driven eigenfunctions are eigenfunctions of a Fourier integral operator; they remarkably extend analytically to the whole space, are doubly orthogonal, and are complete in the class of band-limited functions. We first establish a Picard criterion for reconstructing the contrast using the data-driven basis, where the reconstruction formula can also be understood in the viewpoint of data processing and analytic extrapolation. Another salient feature associated with the generalized prolate spheroidal wave functions is that the data-driven basis for a disk is also a basis for a Sturm-Liouville differential operator. With the help of Sturm-Liouville theory, we estimate the $L^2$ approximation error for a spectral cutoff approximation of $H^s$ functions, $0<s\le1$. This yields a spectral cutoff regularization strategy for noisy data and an explicit stability estimate for contrast in $H^s$ ($0<s\le1$) in the full aperture case. In the limited-aperture and multi-frequency cases, we also obtain spectral cutoff regularization strategies for noisy data and stability estimates for a class of contrast.
翻译:我们考虑使用Born数据进行介质反射的反演,包括全孔径、有限孔径和多频数据重构介质对比度。我们提出了一类数据驱动的基础,基于广义椭球面波函数和相关的特征函数。这种数据驱动的特征函数是Fourier积分算子的特征向量,它们在解析上显著地延伸到整个空间,是双正交的,并且在有限带宽函数类中是完备的。我们首先建立了使用数据驱动基础重构对比度的Picard准则。重构公式也可以从数据处理和解析外推的视角理解。与广义椭球面波函数相关的另一个显著特点是,一个圆盘的数据驱动基础也是一个Sturm-Liouville微分算子的基础。借助Sturm-Liouville理论,我们估计了$H^s$函数的$ L^2 $逼近误差,其中$ 0<s\leq1 $是谱截止逼近的一个显著特征。这为噪声数据提供了谱截止正则化策略,并提供了全孔径情况下$H^s $($ 0<s\le1$)对比度的明确稳定性估计。在有限孔径和多频率情况下,我们还获得了噪声数据的谱截止正则化策略以及对比度一类的稳定性估计。