Open Information Extraction (OpenIE) facilitates domain-independent discovery of relational facts from large corpora. The technique well suits many open-world natural language understanding scenarios, such as automatic knowledge base construction, open-domain question answering, and explicit reasoning. Thanks to the rapid development in deep learning technologies, numerous neural OpenIE architectures have been proposed and achieve considerable performance improvement. In this survey, we provide an extensive overview of the-state-of-the-art neural OpenIE models, their key design decisions, strengths and weakness. Then, we discuss limitations of current solutions and the open issues in OpenIE problem itself. Finally we list recent trends that could help expand its scope and applicability, setting up promising directions for future research in OpenIE. To our best knowledge, this paper is the first review on this specific topic.
翻译:开放信息提取( OpenInform Information Explication, OpenIE) 有助于从大型公司中独立发现相关事实。 技术井适用于许多开放世界的自然语言理解情景, 如自动知识库建设、开放域问题解答和明确推理。 由于深层学习技术的迅速发展,许多神经开源信息架构已经提出,并取得了相当程度的绩效改进。 在本次调查中,我们提供了对最新神经开源信息模型及其关键设计决定、强项和弱项的广泛概述。 然后,我们讨论了当前解决方案的局限性以及开放环境问题本身的开放问题。 最后,我们列举了有助于扩大其范围和适用性的最新趋势,为开放环境的未来研究确定了有希望的方向。 据我们所知,本文是对这一具体专题的第一次审查。