Ensuring safety is of paramount importance in physical human-robot interaction applications. This requires both an adherence to safety constraints defined on the system state, as well as guaranteeing compliant behaviour of the robot. If the underlying dynamical system is known exactly, the former can be addressed with the help of control barrier functions. Incorporation of elastic actuators in the robot's mechanical design can address the latter requirement. However, this elasticity can increase the complexity of the resulting system, leading to unmodeled dynamics, such that control barrier functions cannot directly ensure safety. In this paper, we mitigate this issue by learning the unknown dynamics using Gaussian process regression. By employing the model in a feedback linearizing control law, the safety conditions resulting from control barrier functions can be robustified to take into account model errors, while remaining feasible. In order enforce them on-line, we formulate the derived safety conditions in the form of a second-order cone program. We demonstrate our proposed approach with simulations on a two-degree of freedom planar robot with elastic joints.
翻译:确保安全在人体-机器人物理互动应用中至关重要,这既要求遵守系统状态确定的安全限制,也保障机器人的合规行为。如果确切了解基本动态系统,则可以借助控制屏障功能来处理前者。将弹性活性器纳入机器人的机械设计可以满足后者的要求。然而,这种弹性可以增加由此形成的系统的复杂性,导致未经改造的动态,因此控制屏障功能不能直接确保安全。在本文中,我们通过利用高山进程回归来了解未知的动态来缓解这一问题。通过在反馈线性控制法中使用该模型,控制屏障功能产生的安全条件可以稳健地考虑到模型错误,同时仍然可行。为了在线执行这些错误,我们以二级锥形程序的形式制定衍生的安全条件。我们通过模拟使用弹性联合的二度自由板机器人来展示我们所提议的方法。