In this paper we evaluate the impact of domain shift on human detection models trained on well known object detection datasets when deployed on data outside the distribution of the training set, as well as propose methods to alleviate such phenomena based on the available annotations from the target domain. Specifically, we introduce the OpenDR Humans in Field dataset, collected in the context of agricultural robotics applications, using the Robotti platform, allowing for quantitatively measuring the impact of domain shift in such applications. Furthermore, we examine the importance of manual annotation by evaluating three distinct scenarios concerning the training data: a) only negative samples, i.e., no depicted humans, b) only positive samples, i.e., only images which contain humans, and c) both negative and positive samples. Our results indicate that good performance can be achieved even when using only negative samples, if additional consideration is given to the training process. We also find that positive samples increase performance especially in terms of better localization. The dataset is publicly available for download at https://github.com/opendr-eu/datasets.
翻译:在本文中,我们评估了在培训数据集分布之外的数据上部署时,对在众所周知的物体探测数据集方面受过训练的人类探测模型进行域变换的影响,并根据目标域的现有说明提出了减轻此类现象的方法。具体地说,我们介绍了在农业机器人应用方面收集的实地开放DR人类数据集,使用机器人平台,允许定量测量此类应用中域变换的影响。此外,我们通过评价三种不同的培训数据情景来审查人工说明的重要性:a)只有负面样本,即没有描绘的人类,b)只有阳性样本,即只有含有人类的图像,以及c)正性和正性样本。我们的结果表明,即使只使用负性样本,如果对培训过程给予更多的考虑,也可以取得良好的绩效。我们还发现,积极的样本提高了绩效,特别是在更好的本地化方面。数据集公开下载在https://github.com/opendr-eu/dataset。