Deep neural networks (DNNs) have achieved remarkable performance across a wide range of applications, while they are vulnerable to adversarial examples, which motivates the evaluation and benchmark of model robustness. However, current evaluations usually use simple metrics to study the performance of defenses, which are far from understanding the limitation and weaknesses of these defense methods. Thus, most proposed defenses are quickly shown to be attacked successfully, which results in the ``arm race'' phenomenon between attack and defense. To mitigate this problem, we establish a model robustness evaluation framework containing 23 comprehensive and rigorous metrics, which consider two key perspectives of adversarial learning (i.e., data and model). Through neuron coverage and data imperceptibility, we use data-oriented metrics to measure the integrity of test examples; by delving into model structure and behavior, we exploit model-oriented metrics to further evaluate robustness in the adversarial setting. To fully demonstrate the effectiveness of our framework, we conduct large-scale experiments on multiple datasets including CIFAR-10, SVHN, and ImageNet using different models and defenses with our open-source platform. Overall, our paper provides a comprehensive evaluation framework, where researchers could conduct comprehensive and fast evaluations using the open-source toolkit, and the analytical results could inspire deeper understanding and further improvement to the model robustness.


翻译:深心神经网络(DNNs)在广泛的应用中取得了显著的成绩,尽管它们容易受到引发对模型稳健性进行评估和衡量模型强健性基准的对抗性实例的影响,但目前的评价通常使用简单的衡量标准来研究防御性的表现,这些衡量标准远不能理解这些防御方法的局限性和弱点。因此,大多数拟议的防御措施很快被证明是成功的,从而导致攻击和防御之间的“军备竞赛”现象。为了缓解这一问题,我们建立了一个包含23个全面而严格的衡量标准的稳健性示范评价框架,其中考虑到对抗性学习的两个关键观点(即数据和模型)。通过神经覆盖和数据不易读性,我们使用面向数据的指标来衡量防御性,以衡量测试实例的完整性;通过研究模型的结构和行为,我们利用面向模型的衡量标准来进一步评价对抗性环境的稳健健性。为了充分证明我们的框架的有效性,我们用不同的模型和防御性网络,包括CIFAR-10、SVHN和图像网络,以及利用不同的模型和防御性研究的两种观点(即数据和模型),我们的文件可以提供一个快速的更深入的分析结果分析框架。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
A Comprehensive Survey on Transfer Learning
Arxiv
120+阅读 · 2019年11月7日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员