Automatic car damage detection has attracted significant attention in the car insurance business. However, due to the lack of high-quality and publicly available datasets, we can hardly learn a feasible model for car damage detection. To this end, we contribute with the Car Damage Detection (CarDD), the first public large-scale dataset designed for vision-based car damage detection and segmentation. Our CarDD contains 4,000 high-resolution car damage images with over 9,000 wellannotated instances of six damage categories (examples are shown in Fig. 1). We detail the image collection, selection, and annotation processes, and present a statistical dataset analysis. Furthermore, we conduct extensive experiments on CarDD with state-of-theart deep methods for different tasks and provide comprehensive analysis to highlight the specialty of car damage detection.
翻译:汽车保险业对自动汽车损坏的探测引起了极大关注,然而,由于缺乏高质量和公开的数据集,我们几乎无法了解车辆损坏探测的可行模式,为此,我们协助建立了汽车损坏探测(CarDD),这是第一个公共大型的大规模数据集,设计用于基于视觉的汽车损坏探测和分割,我们的汽车损坏探测(CarDD)包含4,000个高分辨率汽车损坏图像,其中六类损坏有9,000多例有良好的注释(插图1),我们详细介绍了图像收集、选择和注释过程,并提供了统计数据数据集分析。此外,我们还对CarDD进行了广泛的实验,对不同任务采用了最先进的深度方法,并提供了全面分析,以突出汽车损坏探测的特点。