In this paper, we propose, analyze, and test an efficient algorithm for computing ensemble average of incompressible magnetohydrodynamics (MHD) flows, where instances/members correspond to varying kinematic viscosity, magnetic diffusivity, body forces, and initial conditions. The algorithm is decoupled in Els\"asser variables and permits a shared coefficient matrix for all members at each time-step. Thus, the algorithm is much more computationally efficient than separately computing simulations for each member using usual MHD algorithms. We prove the proposed algorithm is unconditionally stable and convergent. Several numerical tests are given to support the predicted convergence rates. Finally, we test the proposed scheme and observe how the physical behavior changes as the coupling number increases in a lid-driven cavity problem with mean Reynolds number $Re\approx 15000$, and as the deviation of uncertainties in the initial and boundary conditions increases in a channel flow past a step problem.
翻译:在本文中,我们提议、分析和测试一种高效的算法,用于计算不可压缩磁力动力(MHD)流的混合平均值,其中实例/成员对应不同的运动粘度、磁变异性、体力和初始条件。算法在 Els\'asser 变量中分离,允许所有成员在每一个时间步骤中共享系数矩阵。因此,算法比使用普通 MHD 算法对每个成员分别进行计算模拟更具有计算效率。我们证明,提议的算法是无条件稳定和趋同的。为了支持预测的汇合率,提供了若干数字测试。最后,我们测试了拟议方案,并观察了在以利差驱动的裂缝问题中,物理行为的变化情况是如何随着混合数的增加而变化的,平均 Reynolds 编号为 $REapprox 15000美元,以及由于最初的不确定性和边界条件的偏差在通道流过一个步骤问题时会增加。