The choice of the prior model can have a large impact on the ability to assimilate data. In standard applications of ensemble-based data assimilation, all realizations in the initial ensemble are generated from the same covariance matrix with the implicit assumption that this covariance is appropriate for the problem. In a hierarchical approach, the parameters of the covariance function, for example the variance, the orientation of the anisotropy and the ranges in two principal directions, may all be uncertain. Thus, the hierarchical approach is much more robust against model misspecification. In this paper, three approaches to sampling from the posterior for hierarchical parameterizations are discussed: an optimization-based sampling approach (RML), an iterative ensemble smoother (IES), and a novel hybrid of the previous two approaches (hybrid IES). The three approximate sampling methods are applied to a linear-Gaussian inverse problem for which it is possible to compare results with an exact "marginal-then-conditional" approach. Additionally, the IES and the hybrid IES methods are tested on a two-dimensional flow problem with uncertain anisotropy in the prior covariance. The standard IES method is shown to perform poorly in the flow examples because of the poor representation of the local sensitivity matrix by the ensemble-based method. The hybrid method, however, samples well even with a relatively small ensemble size.


翻译:前一种模型的选择可能对同化数据的能力产生很大影响。 在基于共性的数据同化的标准应用中,初始共化中的所有实现都来自同一个共变矩阵,暗含假设这种共变适合问题。在分级方法中,共变函数的参数,例如差异、厌食症的方向和两个主要方向的幅度,都可能是不确定的。因此,分级方法比模型的偏差更加有力。在本文中,讨论了从后一种上层取样用于分级参数化的三种方法:基于优化的抽样方法(RML)、迭代共振平滑剂(IES)和前两种方法的新混合体(Hybribly IES)。三种近似抽样方法适用于线性-Gaussian的反向问题,有可能将结果与精确的“以目前为基”的方法进行比较。此外,IES和混合的IES方法在二维基流中都进行了测试。前一种不固定的混合方法,因为前一种不固定的混合方法表现了前一种不稳的混合方法。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
180+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员