In this paper, we consider a variant of the classical algorithmic problem of checking whether a given word $v$ is a subsequence of another word $w$. More precisely, we consider the problem of deciding, given a number $p$ (defining a range-bound) and two words $v$ and $w$, whether there exists a factor $w[i:i+p-1]$ (or, in other words, a range of length $p$) of $w$ having $v$ as subsequence (i.\,e., $v$ occurs as a subsequence in the bounded range $w[i:i+p-1]$). We give matching upper and lower quadratic bounds for the time complexity of this problem. Further, we consider a series of algorithmic problems in this setting, in which, for given integers $k$, $p$ and a word $w$, we analyse the set $p$-Subseq$_{k}(w)$ of all words of length $k$ which occur as subsequence of some factor of length $p$ of $w$. Among these, we consider the $k$-universality problem, the $k$-equivalence problem, as well as problems related to absent subsequences. Surprisingly, unlike the case of the classical model of subsequences in words where such problems have efficient solutions in general, we show that most of these problems become intractable in the new setting when subsequences in bounded ranges are considered. Finally, we provide an example of how some of our results can be applied to subsequence matching problems for circular words.


翻译:在本文中, 我们考虑一个典型的算法问题的变式, 即检查给定的单词$v$是否是另一个单词的子序列。 更确切地说, 我们考虑的是一个问题, 考虑到一个数美元( 限定范围) 和两个字美元和元美元, 是否存在一个因数$[ i: +p-1] (或, 换句话说, 长度范围为美元), 以美元作为子序列( i.\, e., 美元作为下序列。 美元作为下序列的子序列。 我们给出了这个问题的时间复杂性对应的上下四边框。 此外, 我们考虑了一系列的算法问题, 对于给定的整数美元、 美元和一字, 我们分析的设定值为美元- supersequalqueme 。 当我们从一个正序的次序列中, 当我们从一个因数的次序到一个因子问题 美元, 当我们从一个直径的次序中, 当我们从一个因数的直值中, 质的直值问题 质的个次的个数, 当我们算为美元 。 问题在直序的次的个次的个次折号中, 问题是如何的次的次的 。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Support vector machines and Radon's theorem
Arxiv
0+阅读 · 2022年9月16日
A Spectral Approach to Polytope Diameter
Arxiv
0+阅读 · 2022年9月15日
Arxiv
0+阅读 · 2022年9月13日
Arxiv
54+阅读 · 2022年1月1日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员