We provide an empirical process theory for locally stationary processes over nonsmooth function classes. An important novelty over other approaches is the use of the flexible functional dependence measure to quantify dependence. A functional central limit theorem and nonasymptotic maximal inequalities are provided. The theory is used to prove the functional convergence of the empirical distribution function (EDF) and to derive uniform convergence rates for kernel density estimators both for stationary and locally stationary processes. A comparison with earlier results based on other measures of dependence is carried out.
翻译:我们为地方固定过程的非悬浮功能类别提供了一个经验过程理论;与其他方法相比,一个重要的新颖之处是使用灵活的功能依赖性措施来量化依赖性;提供了功能中心限制理论和非简易最大不平等;该理论用来证明经验分配功能(EDF)的功能趋同,并为固定和地方固定过程的内核密度估计器得出统一的趋同率;与其他依赖性衡量法的早期结果进行比较。