We consider a mesh-based approach for training a neural network to produce field predictions of solutions to parametric partial differential equations (PDEs). This approach contrasts current approaches for "neural PDE solvers" that employ collocation-based methods to make point-wise predictions of solutions to PDEs. This approach has the advantage of naturally enforcing different boundary conditions as well as ease of invoking well-developed PDE theory -- including analysis of numerical stability and convergence -- to obtain capacity bounds for our proposed neural networks in discretized domains. We explore our mesh-based strategy, called NeuFENet, using a weighted Galerkin loss function based on the Finite Element Method (FEM) on a parametric elliptic PDE. The weighted Galerkin loss (FEM loss) is similar to an energy functional that produces improved solutions, satisfies a priori mesh convergence, and can model Dirichlet and Neumann boundary conditions. We prove theoretically, and illustrate with experiments, convergence results analogous to mesh convergence analysis deployed in finite element solutions to PDEs. These results suggest that a mesh-based neural network approach serves as a promising approach for solving parametric PDEs with theoretical bounds.
翻译:我们考虑一种基于网格的方法,用于培训神经网络,以实地预测对准部分差异方程(PDEs)的解决方案。这个方法与目前对“神经PDE溶液”的处理办法形成对比,后者采用基于同地点的方法,对PDEs的解决方案作出有分点的预测。这个方法的优点是自然地执行不同的边界条件,并易于援引完善的PDE理论 -- -- 包括数字稳定性和趋同的分析 -- -- 以获得在离散域中拟议神经网络的能力界限。我们探索我们的基于网格的战略,即NeuFENet, 使用基于对准异地极离子元素法(FEM)的加权加勒金损失函数。加权加勒金损失(FEM损失)类似于能产生改进解决方案的能源功能,能够满足前置网形趋同,并可以模拟Drichlet和Neumann边界条件。我们用实验来证明,趋同在PDEs的有限元素解决方案中采用的Mesh趋同结果。这些结果表明,基于PSEDE的理论网络的理论式理论模型模型模型是解决有希望的封闭式网络方法。