Rough path theory provides one with the notion of signature, a graded family of tensors which characterise, up to a negligible equivalence class, and ordered stream of vector-valued data. In the last few years, use of the signature has gained traction in time-series analysis, machine learning , deep learning and more recently in kernel methods. In this article, we lay down the theoretical foundations for a connection between signature asymptotics, the theory of empirical processes, and Wasserstein distances, opening up the landscape and toolkit of the second and third in the study of the first. Our main contribution is to show that the Hambly-Lyons limit can be reinterpreted as a statement about the asymptotic behaviour of Wasserstein distances between two independent empirical measures of samples from the same underlying distribution. In the setting studied here, these measures are derived from samples from a probability distribution which is determined by geometrical properties of the underlying path. The general question of rates of convergence for these objects has been studied in depth in the recent monograph of Bobkov and Ledoux. By using these results, we generalise the original result of Hambly and Lyons from $C^3$ curves to a broad class of $C^2$ ones. We conclude by providing an explicit way to compute the limit in terms of a second-order differential equation.


翻译:粗路理论提供了一个签名概念, 一个分级数组数组数组数组数组, 其特征为可忽略不计的等等值等级, 以及矢量价值数据的定序流。 在过去几年里, 签名的使用在时间序列分析、 机器学习、 深层次学习和最近内核方法中获得了牵引力。 在本条中, 我们为签名无症状、 经验过程理论 和瓦塞尔斯坦距离之间的联系奠定了理论基础, 开启了第一个对象研究中第二和第三个对象的景观和工具包。 我们的主要贡献是显示 Hambly- Lyons 限制可以被重新解释为关于 瓦塞尔斯坦 从同一基本分布的样本的两种独立实验性测量之间的无症状行为的陈述 。 在本文所研究的环境下, 这些数据来自由基本路径的几何特性所决定的概率分布。 这些对象汇合率的一般问题已在最近鲍伯科夫 和 勒杜苏 的单组中深入研究过。 我们通过这些结果, 将 Hamrstein 3 和 Ex Ex Ex 的 等值 的原始结果 以 $C 提供 Ex $ Ex Ex Ex 的 exble exb ex ex ex exlal ex ex ex ex ex ex ex exmal ex exm ex ex ex ex ex ex ex ex ex ex ex ex ex ex exm ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex exm ex exm ex ex ex ex ex ex ex ex ex ex ex exm ex ex ex ex ex ex ex ex ex ex exm ex ex ex ex ex ex ex ex exm exm ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex

0
下载
关闭预览

相关内容

【硬核书】树与网络上的概率,716页pdf
专知会员服务
74+阅读 · 2021年12月8日
专知会员服务
16+阅读 · 2021年5月21日
专知会员服务
51+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年12月9日
Arxiv
0+阅读 · 2021年12月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员