We present a multisensor fusion framework for the onboard real-time navigation of a quadrotor in an indoor environment. The framework integrates sensor readings from an Inertial Measurement Unit (IMU), a camera-based object detection algorithm, and an Ultra-WideBand (UWB) localisation system. Often the sensor readings are not always readily available, leading to inaccurate pose estimation and hence poor navigation performance. To effectively handle and fuse sensor readings, and accurately estimate the pose of the quadrotor for tracking a predefined trajectory, we design a Maximum Correntropy Criterion Kalman Filter (MCC-KF) that can manage intermittent observations. The MCC-KF is designed to improve the performance of the estimation process when is done with a Kalman Filter (KF), since KFs are likely to degrade dramatically in practical scenarios in which noise is non-Gaussian (especially when the noise is heavy-tailed). To evaluate the performance of the MCC-KF, we compare it with a previously designed Kalman filter by the authors. Through this comparison, we aim to demonstrate the effectiveness of the MCC-KF in handling indoor navigation missions. The simulation results show that our presented framework offers low positioning errors, while effectively handling intermittent sensor measurements.
翻译:本文提出了一种用于室内环境中四旋翼机器人的实时导航的多传感器融合框架。该框架整合了惯性测量单元(IMU)的传感器读数、基于摄像头的对象检测算法以及超宽带(UWB)定位系统的传感器读数。由于传感器读数通常不总是随时可用,因此往往导致姿态估计不准确,进而导致导航性能不佳。为了有效处理和融合传感器读数,准确地估计四轴机器人的姿态以跟踪预定义的轨迹,本文设计了一种最大相关熵准则卡尔曼滤波器(MCC-KF),该滤波器能够处理间歇观测。由于在实际场景中噪声通常不是高斯噪声(特别是重尾噪声),因此卡尔曼滤波器(KF)的处理效率容易受到影响。MCC-KF是为了提高估计过程的效率而设计的,因此能够克服KF在处理重尾噪声时容易降级的缺点。为了评估MCC-KF的性能,本文将其与作者先前设计的卡尔曼滤波器进行了比较。通过此比较,我们旨在展示MCC-KF在室内导航任务中的有效性。仿真结果表明,我们提出的框架具有低的定位误差,同时能够有效处理间歇性传感器测量。