For any $\varepsilon>0$, we give a simple, deterministic $(6+\varepsilon)$-approximation algorithm for the Nash social welfare (NSW) problem under submodular valuations. The previous best approximation factor was $380$ via a randomized algorithm. We also consider the asymmetric variant of the problem, where the objective is to maximize the weighted geometric mean of agents' valuations, and give an $(\omega + 2 +\varepsilon) e$-approximation if the ratio between the largest weight and the average weight is at most $\omega$. We also show that the $1/2$-EFX envy-freeness property can be attained simultaneously with a constant-factor approximation. More precisely, we can find an allocation in polynomial time which is both $1/2$-EFX and a $(12+\varepsilon)$-approximation to the symmetric NSW problem under submodular valuations. The previous best approximation factor under $1/2$-EFX was linear in the number of agents.
翻译:对于任何$varepsilon>0美元,我们给亚模式估值下的纳什(Nash)社会福利问题(NSW)用一个简单、确定性(6 ⁇ varepsilon)$(6 ⁇ varepsilon) $-procimation 算法。上一个最佳近似系数是通过随机算法的380美元。我们还可以考虑问题的非对称变量,其目标是最大限度地提高代理人估值的加权几何平均值,如果最大重量与平均重量之比最高为$\omega美元,则给出一个确定性($+2 ⁇ varepsilon) e-aprocolmation e-aprocimation。我们还表明,1/2美元-EFX下的先前最佳近似系数可以与不变的近似值同时达到。更准确地说,我们可以在多元时间找到一个分配,即1/2美元-EFX美元和1美元( ⁇ zvareprepslon)美元与亚模式估值下的对称 NSWW问题之对称值。在1/2-EFX下的前最佳近点系数系数为直线。