Existing deep learning based stereo matching methods either focus on achieving optimal performances on the target dataset while with poor generalization for other datasets or focus on handling the cross-domain generalization by suppressing the domain sensitive features which results in a significant sacrifice on the performance. To tackle these problems, we propose PCW-Net, a Pyramid Combination and Warping cost volume-based network to achieve good performance on both cross-domain generalization and stereo matching accuracy on various benchmarks. In particular, our PCW-Net is designed for two purposes. First, we construct combination volumes on the upper levels of the pyramid and develop a cost volume fusion module to integrate them for initial disparity estimation. Multi-scale receptive fields can be covered by fusing multi-scale combination volumes, thus, domain-invariant features can be extracted. Second, we construct the warping volume at the last level of the pyramid for disparity refinement. The proposed warping volume can narrow down the residue searching range from the initial disparity searching range to a fine-grained one, which can dramatically alleviate the difficulty of the network to find the correct residue in an unconstrained residue searching space. When training on synthetic datasets and generalizing to unseen real datasets, our method shows strong cross-domain generalization and outperforms existing state-of-the-arts with a large margin. After fine-tuning on the real datasets, our method ranks first on KITTI 2012, second on KITTI 2015, and first on the Argoverse among all published methods as of 7, March 2022. The code will be available at https://github.com/gallenszl/PCWNet.
翻译:为解决这些问题,我们建议采用基于深度学习的立体匹配方法,要么侧重于在目标数据集上取得最佳性能,而其他数据集的常规化程度不高,要么侧重于通过抑制导致业绩重大牺牲的对域敏感特性,处理跨域统化;为解决这些问题,我们提议采用PCW-Net,即基于成本量的金字塔组合和扭曲成本量网络,以便在跨域统化和各种基准的对称准确性两方面实现良好性能。特别是,我们PCW-Net的设计有两个目的。首先,我们将金字塔上层的量合并,并开发一个成本量融合模块,以整合它们用于初步差异估计。多尺度的接受字段可以通过使用多尺度组合体积来覆盖,从而可以提取域内变异性特征特征特征。我们为在金字塔的最后一级构建扭曲音量,以缩小从初始差异搜索范围到微调/微调的一个目标范围。这可以大大减轻网络在首次发现真实的基数级组合组合组合组合组合模块中的准确性残余度,在2012年三月中,将用普通数据系统对当前数据进行模拟数据系统进行模拟化,然后,将现有数据系统进行实时数据系统对等数据系统进行关于2015年版数据系统进行数据分析。