Motivated by the discrete dipole approximation (DDA) for the scattering of electromagnetic waves by a dielectric obstacle that can be considered as a simple discretization of a Lippmann-Schwinger style volume integral equation for time-harmonic Maxwell equations, we analyze an analogous discretization of convolution operators with strongly singular kernels. For a class of kernel functions that includes the finite Hilbert transformation in 1D and the principal part of the Maxwell volume integral operator used for DDA in dimensions 2 and 3, we show that the method, which does not fit into known frameworks of projection methods, can nevertheless be considered as a finite section method for an infinite block Toeplitz matrix. The symbol of this matrix is given by a Fourier series that does not converge absolutely. We use Ewald's method to obtain an exponentially fast convergent series representation of this symbol and show that it is a bounded function, thereby allowing to describe the spectrum and the numerical range of the matrix. It turns out that this numerical range includes the numerical range of the integral operator, but that it is in some cases strictly larger. In these cases the discretization method does not provide a spectrally correct approximation, and while it is stable for a large range of the spectral parameter $\lambda$, there are values of $\lambda$ for which the singular integral equation is well posed, but the discretization method is unstable.


翻译:由离散的 dipole 近似值(DDAD) 驱动, 将电磁波通过电磁波散布为电磁波的电磁屏障碍, 它可以被视为时间- 调和 Maxwell 方程式中Lipmann- Schwinger 风格体积整体方程式的简单离散化, 我们分析的是具有强烈单核内核的聚合操作器的类似离散操作器。 对于包含 1D 中的有限 Hilbert 转换和 DAD 2 和 3 的 Maxwell 体积整体操作器的主要部分的内核功能, 我们显示, 与已知的投影法不相容, 但是, 仍然可以被视为一个无限块块块块的离析方块 Toeplitz 矩阵中的有限部分方法。 这个矩阵的符号由不绝对趋同的 Fourier系列提供。 我们使用 Ewald 的方法来获得这个符号的指数性快速趋同序列表示, 显示它是一个捆绑的功能, 从而可以描述矩阵的频谱和数字范围。 它包括集操作的数值范围, 但是, 它在某情况下, 最不稳定的光化法度范围 。</s>

0
下载
关闭预览

相关内容

【2022新书】Python数据分析第三版,579页pdf
专知会员服务
227+阅读 · 2022年8月31日
【硬核书】矩阵代数基础,248页pdf
专知会员服务
81+阅读 · 2021年12月9日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
11+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
22+阅读 · 2022年2月4日
Arxiv
38+阅读 · 2021年8月31日
Arxiv
64+阅读 · 2021年6月18日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关VIP内容
【2022新书】Python数据分析第三版,579页pdf
专知会员服务
227+阅读 · 2022年8月31日
【硬核书】矩阵代数基础,248页pdf
专知会员服务
81+阅读 · 2021年12月9日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
11+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员