We present an improved formalism for quantum Monte Carlo calculations of energy derivatives and properties (e.g. the interatomic forces), with a multideterminant Jastrow-Slater function. As a function of the number $N_e$ of Slater determinants, the numerical scaling of $O(N_e)$ per derivative we have recently reported is here lowered to $O(N_e)$ for the entire set of derivatives. As a function of the number of electrons $N$, the scaling to optimize the wave function and the geometry of a molecular system is lowered to $O(N^3)+O(N N_e)$, the same as computing the energy alone in the sampling process. The scaling is demonstrated on linear polyenes up to C$_{60}$H$_{62}$ and the efficiency of the method is illustrated with the structural optimization of butadiene and octatetraene with Jastrow-Slater wave functions comprising as many as 200000 determinants and 60000 parameters.
翻译:我们对量子蒙特卡洛计算能源衍生物和特性(如间原子力量)提出了一种改进的形式主义,这种计算具有多种确定性 Jastrow-Slater 函数。作为Slater决定因素数的函数,我们最近报告的每衍生物美元(e)的数值缩放幅度在此降至整个一套衍生物的美元(N_e),作为电子数的函数,优化分子系统的波函数和几何测量值的缩放将降至美元(N_3)+O(N_e),与在取样过程中单独计算能量相同。线性聚苯的缩放幅度显示在高达C ⁇ 60美元(H)$(62)美元的范围内,该方法的效率通过对丁二烯和八丁烯的结构性优化和Jastrow-Slater波函数(包括多达2,000个决定因素和6000个参数)加以说明。