Many problems in computer science reduce to the recovery of an $n$-sparse measure from its (generalized) moments. Sparse measure recovery has been the research focus in super-resolution, tensor decomposition, and learning neural networks. The existing methods use either convex relaxations or overparameterization for recovery. Here, we propose recovery with non-convex optimization without overparameterization. Our algorithm is a (sub)gradient descent method optimizing a non-convex energy function studied in physics. We establish the global convergence of gradient descent on the energy function. This result enables us to solve super-resolution in $O(n^2)$ time, which significantly improves upon $O(n^3)$ time for solving convex relaxations. For a particular neural network, we prove the global convergence of subgradient descent on the population loss without overparameterization. The studied network has zero-one activations, and inputs drawn from the unit sphere.
翻译:计算机科学的许多问题从(一般化的)瞬间恢复到一个不小的计量。 粗化的计量恢复一直是超分辨率、 高分解和学习神经网络的研究焦点。 现有的方法要么使用二次松动, 要么使用超度分解来恢复。 在这里, 我们建议用非二次松动优化来恢复, 而不过分分计。 我们的算法是一种( 次) 渐进的下降法, 优化物理学中研究的非碳化能源功能。 我们建立了能源功能上梯度下降的全球趋同。 这个结果使我们能够用美元( 0. 2) 的时间解决超级分辨率问题, 用美元( 0. 3) 大大改善解决二次松动的时间。 对于一个特定的神经网络, 我们证明在不过分分层下降的同时, 人口损失的次梯度下降是全球趋同的。 所研究的网络有零-1的激活, 以及从单位领域提取的投入 。