We present a phase field-based framework for modelling fatigue damage in Shape Memory Alloys (SMAs). The model combines, for the first time: (i) a generalised phase field description of fracture, incorporating multiple phase field formulations, (ii) a constitutive model for SMAs, based on a Drucker-Prager form of the transformation surface, and (iii) a fatigue degradation function, with damage driven by both elastic and transformation strains. The theoretical framework is numerically implemented, and the resulting linearised system is solved using a robust monolithic scheme, based on quasi-Newton methods. Several paradigmatic boundary value problems are addressed to gain insight into the role of transformation stresses, stress-strain hysteresis and temperature. Namely, we compute $\Delta \varepsilon-N$ curves, quantify Paris law parameters and predict fatigue crack growth rates in several geometries. In addition, the potential of the model for solving large-scale problems is demonstrated by simulating the fatigue failure of a 3D lattice structure.
翻译:我们为形状内存合体(SMAs)的损耗建模提供了一个以实地为基础的分阶段框架。模型首次结合了:(一) 骨折的全阶段场描述,包括多阶段场配方,(二) 以变形表面的Drucker-Prager形式为基础的SMAs构成模型,以及(三) 疲劳降解功能,由弹性和变形菌株驱动的损害。理论框架是用数字方式执行的,由此产生的线性化系统是用一个以准Newton方法为基础的强有力的单体计划来解决的。一些范式边界值问题是为了深入了解变形压力、压力-压力-压力-歇斯底里和温度的作用。也就是说,我们计算了美元Delta \ varepsilon-N$曲线,量化了巴黎法律参数,并预测了几个地理模型的疲劳率增长速度。此外,通过模拟3D阵列结构的疲劳失败来证明解决大规模问题的模式的潜力。