The classical Cauchy continuum theory is suitable to model highly homogeneous materials. However, many materials, such as porous media or metamaterials, exhibit a pronounced microstructure. As a result, the classical continuum theory cannot capture their mechanical behaviour without fully resolving the underlying microstructure. In terms of finite element computations, this can be done by modelling the entire body, including every interior cell. The relaxed micromorphic continuum offers an alternative method by instead enriching the kinematics of the mathematical model. The theory introduces a microdistortion field, encompassing nine extra degrees of freedom for each material point. The corresponding elastic energy functional contains the gradient of the displacement field, the microdistortion field and its Curl (the micro-dislocation). Therefore, the natural spaces of the fields are $[\mathit{H}^1]^3$ for the displacement and $[\mathit{H}(\mathrm{curl})]^3$ for the microdistortion, leading to unusual finite element formulations. In this work we describe the construction of appropriate finite elements using N\'ed\'elec and Raviart-Thomas subspaces, encompassing solutions to the orientation problem and the discrete consistent coupling condition. Further, we explore the numerical behaviour of the relaxed micromorphic model for both a primal and a mixed formulation. The focus of our benchmarks lies in the influence of the characteristic length $L_\mathrm{c}$ and the correlation to the classical Cauchy continuum theory.
翻译:古典Cauchy 连续理论适合于模拟高度同质的材料。 但是, 许多材料, 如多孔的介质或元材料, 都呈现出显微结构。 因此, 古典连续理论无法在完全解决基本微结构之前捕捉机械行为 。 在有限元素计算方面, 可以通过模拟整个身体, 包括每个内部细胞来做到这一点 。 放松的微形态连续理论提供了一种替代方法, 而不是丰富数学模型的动力学 。 该理论引入了一个微粒扭曲场, 包括每个材料点的9个额外自由度。 相应的弹性能源功能包含迁移场的梯度、 微变色化场及其曲线( 微变异 ) 。 因此, 域的自然空间是 $[ \ mathit{H ⁇ 1]3$, 用于模拟, 包括每个内部细胞细胞。 放松微变异, 导致异常的元素配制。 在这项工作中, 我们用 N\\ elec 和 Ravirtal- greal commal 等定序元素的构建了适当的固定元素元素结构, 基础理论 和 摩变变形的精确的精确的基质分析制 。