This article aims to present a general study of the Helmholtz problem in slowly varying waveguides. This work is of particular interest at locally resonant frequencies, where a phenomenon close to the tunnel effect for Schr\"odinger equation in quantum mechanics can be observed. In this situation, locally resonant modes propagate in the waveguide under the form of Airy functions. Using previous mathematical results on the Schr\"odinger equation, we prove the existence of a unique solution to the Helmholtz source problem with outgoing conditions in such waveguides. We provide an explicit modal approximation of this solution, as well as a control of the approximation error in H1loc. The main theorem is proved in the case of a waveguide with a monotonously varying profile and then generalized using a matching strategy. We finally validate the modal approximation by comparing it to numerical solutions based on the finite element method.
翻译:文章的目的是在缓慢变化的波导中提出对赫尔姆霍尔茨问题的一般性研究。 这项工作对局部共振频率特别感兴趣, 当地共振频率可以观测到一种接近量子力学中施尔· ” 探点方程式隧道效应的现象。 在这种情况下, 局部共振模式以空气函数的形式在波导中传播。 使用先前的Schr\ “ 测点方程式” 数学结果, 我们证明Helmholtz源问题与这种波导中输出条件存在独特的解决方案。 我们对这种解决方案提供了明确的模式近似, 并控制了H1loc 中的近似错误。 主要标语在波导中得到了证明, 其外形与外向特征有不同, 然后使用匹配策略加以普及。 我们最后通过将它与基于有限元素方法的数字解决方案进行比较来验证模式对齐。