The automatic transformation of verbose, natural language descriptions into structured process models remains a challenge of significant complexity - This paper introduces a contemporary solution, where central to our approach, is the use of dependency parsing and Named Entity Recognition (NER) for extracting key elements from textual descriptions. Additionally, we utilize Subject-Verb-Object (SVO) constructs for identifying action relationships and integrate semantic analysis tools, including WordNet, for enriched contextual understanding. A novel aspect of our system is the application of neural coreference resolution, integrated with the SpaCy framework, enhancing the precision of entity linkage and anaphoric references. Furthermore, the system adeptly handles data transformation and visualization, converting extracted information into BPMN (Business Process Model and Notation) diagrams. This methodology not only streamlines the process of capturing and representing business workflows but also significantly reduces the manual effort and potential for error inherent in traditional modeling approaches.
翻译:暂无翻译