We study how robots can autonomously learn skills that require a combination of navigation and grasping. While reinforcement learning in principle provides for automated robotic skill learning, in practice reinforcement learning in the real world is challenging and often requires extensive instrumentation and supervision. Our aim is to devise a robotic reinforcement learning system for learning navigation and manipulation together, in an autonomous way without human intervention, enabling continual learning under realistic assumptions. Our proposed system, ReLMM, can learn continuously on a real-world platform without any environment instrumentation, without human intervention, and without access to privileged information, such as maps, objects positions, or a global view of the environment. Our method employs a modularized policy with components for manipulation and navigation, where manipulation policy uncertainty drives exploration for the navigation controller, and the manipulation module provides rewards for navigation. We evaluate our method on a room cleanup task, where the robot must navigate to and pick up items scattered on the floor. After a grasp curriculum training phase, ReLMM can learn navigation and grasping together fully automatically, in around 40 hours of autonomous real-world training.
翻译:我们研究机器人如何自主地学习需要导航和掌握相结合的技能。虽然加强学习原则上意味着自动机器人技能学习,但实际上,在现实世界中加强学习具有挑战性,往往需要广泛的仪器和监管。我们的目标是设计一个机器人强化学习系统,在没有人类干预的情况下,以自主的方式一起学习导航和操控,从而在现实假设下能够不断学习。我们提议的系统RELMM可以在没有环境仪器的情况下,在现实世界平台上不断学习,没有人类的干预,也没有特权信息,如地图、物体位置或全球环境观。我们的方法采用模块化政策,包含操纵和导航的组成部分,操纵政策的不确定性驱动导航控制器的探索,操纵模块为导航提供奖励。我们评估我们的方法是清理房间的任务,机器人必须在这里向地面移动和捡起分散的物品。在掌握课程培训阶段后,RLMMM可以在大约40小时的自主现实世界培训中,学习导航和完全抓起。