As the demands of autonomous mobile robots are increasing in recent years, the requirement of the path planning/navigation algorithm should not be content with the ability to reach the target without any collisions, but also should try to achieve possible optimal or suboptimal path from the initial position to the target according to the robot's constrains in practice. This report investigates path planning and control strategies for mobile robots with machine learning techniques, including ground mobile robots and flying UAVs. In this report, the hybrid reactive collision-free navigation problem under an unknown static environment is investigated firstly. By combining both the reactive navigation and Q-learning method, we intend to keep the good characteristics of reactive navigation algorithm and Q-learning and overcome the shortcomings of only relying on one of them. The proposed method is then extended into 3D environments. The performance of the mentioned strategies are verified by extensive computer simulations, and good results are obtained. Furthermore, the more challenging dynamic environment situation is taken into our consideration. We tackled this problem by developing a new path planning method that utilizes the integrated environment representation and reinforcement learning. Our novel approach enables to find the optimal path to the target efficiently and avoid collisions in a cluttered environment with steady and moving obstacles. The performance of these methods is compared with other different aspects.


翻译:由于近年来自主移动机器人的需求不断增加,路径规划/导航算法的要求不应满足于不发生任何碰撞而达到目标的能力,而是应当努力根据机器人的实际局限,从最初位置到目标的可能最佳或次最佳路径。本报告调查了使用机器学习技术,包括地面移动机器人和飞行无人驾驶飞行器的移动机器人的路径规划和控制战略。本报告首先调查了在未知静态环境中的混合反应式无碰撞导航问题。通过将反应式导航算法和Q学习方法结合起来,我们打算保持反应式导航算法和Q学习方法的良好特点,并克服仅依赖其中之一的缺点。拟议方法随后扩展到3D环境。上述战略的绩效通过广泛的计算机模拟得到核实,并取得了良好的结果。此外,我们考虑了更具挑战性的动态环境状况。我们通过开发新的路径规划方法,利用综合环境代表和加强环境学习来解决这一问题。我们的新办法使得能够找到最佳的路径,在目标性能上与不同程度相撞之间找到最佳的路径。我们的新办法是能够找到最接近的其他方法。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Arxiv
3+阅读 · 2021年6月9日
Arxiv
5+阅读 · 2021年2月8日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员