Given a black box (oracle) for the evaluation of a univariate polynomial p(x) of a degree d, we seek its zeros, that is, the roots of the equation p(x)=0. At FOCS 2016 Louis and Vempala approximated a largest zero of such a real-rooted polynomial within $1/2^b$, by performing at NR cost of the evaluation of Newton's ratio p(x)/p'(x) at O(b\log(d)) points x. They readily extended this root-finder to record fast approximation of a largest eigenvalue of a symmetric matrix under the Boolean complexity model. We apply distinct approach and techniques to obtain more general results at the same computational cost.
翻译:鉴于用于评价单象牙多元 p(x) d 度的黑盒(oracle),我们寻求它的零点,即等式p(x)=0的根。在2016年FOCS 会议上,Louis 和 Venmpala 以NR成本对O(b\log(d)) 点的牛顿比率p(x)/p(x)进行评价,从而在1/2美元范围内,以1美元之内,以NR成本对牛顿比率p(x)/p(x)x进行这种评估。它们很容易扩展这一根点,以记录Boolean 复杂模型下对称矩阵的最大电子值的快速近似值。我们采用了不同的方法和技巧,以相同的计算成本获得更一般的结果。