Blind source separation (BSS) aims to recover an unobserved signal $S$ from its mixture $X=f(S)$ under the condition that the effecting transformation $f$ is invertible but unknown. As this is a basic problem with many practical applications, a fundamental issue is to understand how the solutions to this problem behave when their supporting statistical prior assumptions are violated. In the classical context of linear mixtures, we present a general framework for analysing such violations and quantifying their impact on the blind recovery of $S$ from $X$. Modelling $S$ as a multidimensional stochastic process, we introduce an informative topology on the space of possible causes underlying a mixture $X$, and show that the behaviour of a generic BSS-solution in response to general deviations from its defining structural assumptions can be profitably analysed in the form of explicit continuity guarantees with respect to this topology. This allows for a flexible and convenient quantification of general model uncertainty scenarios and amounts to the first comprehensive robustness framework for BSS. Our approach is entirely constructive, and we demonstrate its utility with novel theoretical guarantees for a number of statistical applications.
翻译:盲源分离(BSS)旨在从其混合物$X=f(S)$中恢复未观察到的信号$S$,前提是作用于变换$f$可逆但未知。由于这是一个有许多实际应用的基础问题,一个基本问题是要理解当其支持的统计先验假设被违反时,这个问题的解决方案的行为如何。在线性混合物的经典背景下,我们提出了一种通用的框架,用于分析这些违规行为并量化它们对从$X$中盲恢复$S$的影响。我们将$S$建模为一个多维随机过程,引入了一个信息拓扑结构,用于说明一个混合$X$背后的可能原因的情况。我们展示了一个通用BSS解在对其定义结构假设进行普遍偏离的响应下的行为可以利用与这个拓扑相关的显式连续性保证进行有益的分析。这允许对一般的模型不确定情景进行灵活和方便的量化,相当于为BSS提供了第一个全面的鲁棒性框架。我们的方法是完全构建性的,并使用对一些统计应用程序的新颖理论保证来展示它的实用性。