Recent advances in deep learning have led to the development of models approaching the human level of accuracy. However, healthcare remains an area lacking in widespread adoption. The safety-critical nature of healthcare results in a natural reticence to put these black-box deep learning models into practice. This paper explores interpretable methods for a clinical decision support system called sleep staging, an essential step in diagnosing sleep disorders. Clinical sleep staging is an arduous process requiring manual annotation for each 30s of sleep using physiological signals such as electroencephalogram (EEG). Recent work has shown that sleep staging using simple models and an exhaustive set of features can perform nearly as well as deep learning approaches but only for some specific datasets. Moreover, the utility of those features from a clinical standpoint is ambiguous. On the other hand, the proposed framework, NormIntSleep demonstrates exceptional performance across different datasets by representing deep learning embeddings using normalized features. NormIntSleep performs 4.5% better than the exhaustive feature-based approach and 1.5% better than other representation learning approaches. An empirical comparison between the utility of the interpretations of these models highlights the improved alignment with clinical expectations when performance is traded-off slightly. NormIntSleep paired with a clinically meaningful set of features can best balance this trade-off by providing reliable, clinically relevant interpretation with robust performance.


翻译:最近深层学习的进展导致开发了接近人类准确度的模型;然而,保健仍是一个缺乏广泛采用的领域。保健的安全关键性质导致自然不愿将这些黑盒深层学习模式付诸实践。本文件探讨了临床决策支持系统的解释性方法,称为睡眠状态,这是诊断睡眠紊乱的一个重要步骤。临床睡眠积聚是一个艰巨的过程,需要使用电子脑图等生理信号对每30个睡眠进行人工批注。最近的工作表明,使用简单模型和一套详尽的特征进行睡眠积累几乎可以起到深层次的学习方法,但只能对某些具体的数据集进行。此外,这些特征从临床观点看的效用是模糊的。另一方面,拟议的框架“诺姆IntSleep”展示了不同数据集的特殊性,它代表了使用标准化特征的深度学习嵌入。诺姆IntSleep表现比基于全部特征的方法要好4.5%,比其他代表性学习方法要好1.5%。对这些模型解释的实用性和深度学习方法只有深度的深度学习方法,但只有某些具体的数据集。从临床角度看这些特征的效用是模糊的。在临床贸易业绩方面,因此,能够通过进行可靠的调整。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月24日
Arxiv
13+阅读 · 2022年4月30日
Arxiv
19+阅读 · 2018年10月25日
Arxiv
16+阅读 · 2018年2月7日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员