Extending Moore's law by augmenting complementary-metal-oxide semiconductor (CMOS) transistors with emerging nanotechnologies (X) has become increasingly important. Accelerating Monte Carlo algorithms that rely on random sampling with such CMOS+X technologies could have significant impact on a large number of fields from probabilistic machine learning, optimization to quantum simulation. In this paper, we show the combination of stochastic magnetic tunnel junction (sMTJ)-based probabilistic bits (p-bits) with versatile Field Programmable Gate Arrays (FPGA) to design a CMOS + X (X = sMTJ) prototype. Our approach enables high-quality true randomness that is essential for Monte Carlo based probabilistic sampling and learning. Our heterogeneous computer successfully performs probabilistic inference and asynchronous Boltzmann learning, despite device-to-device variations in sMTJs. A comprehensive comparison using a CMOS predictive process design kit (PDK) reveals that compact sMTJ-based p-bits replace 10,000 transistors while dissipating two orders of magnitude of less energy (2 fJ per random bit), compared to digital CMOS p-bits. Scaled and integrated versions of our CMOS + stochastic nanomagnet approach can significantly advance probabilistic computing and its applications in various domains by providing massively parallel and truly random numbers with extremely high throughput and energy-efficiency.
翻译:扩展摩尔定律,将互补金属氧化物半导体(CMOS)晶体管与新兴纳米技术(X)相结合变得越来越重要。利用这些CMOS + X技术加速依赖随机采样的Monte Carlo算法,可以在概率机器学习、优化和量子模拟等许多领域产生重大影响。在本文中,我们展示了将基于随机磁隧道结(sMTJ)的概率比特(p位)与多功能可编程门阵列(FPGA)相结合以设计CMOS + X(X = sMTJ)原型的组合。我们的方法实现了对Monte Carlo概率采样和学习至关重要的高质量真实随机性。尽管sMTJ存在设备之间的差异,但我们的异构计算机成功地执行了概率推理和异步Boltzmann学习。使用CMOS预测处理设计工具包(PDK)进行全面比较,紧凑的sMTJ p位替换了10,000个晶体管,同时与数字CMOS p位相比,能耗少两个数量级(每个随机比特2fJ)。我们的CMOS + 随机纳米磁体方法的缩放和集成版本可以通过提供具有极高吞吐量和能量效率的大规模并行和真正随机数,显著推动概率计算及其在各个领域的应用。