项目名称: 光学微腔及其阵列系统中基于强耦合的高次谐波和混沌效应及其全光调控研究

项目编号: No.11505131

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 数理科学和化学

项目作者: 余荣

作者单位: 武汉工程大学

项目金额: 18万元

中文摘要: 量子系统在强耦合区域能够显现出众多特有的物理性质。固态光学微腔系统具有易于设计、集成、可控性强的优点,而且具有高品质因子和小模式体积,容易实现强耦合环境,这些使得强耦合条件下微腔及其阵列系统中量子相干调控成为当前研究的热点之一。另一方面,强耦合条件下有时只需要一个或几个光子的光强就可显示出可观测的非线性光学效应,使得光学高次谐波和混沌效应的出现成为可能。本项目将结合量子光学、非线性光学与固体材料学原理,旨在研究量子偶极发射子与光学微腔及其阵列耦合系统中增强的非线性光学效应对高次谐波生成、受控传输及量子压缩等过程作用的微观机制。探索在量子偶极发射子强耦合的光学微腔及其阵列体系中实现光学混沌运动的新方案和新型量子光电子器件。这些研究不仅有助于理解和掌握受限量子体系中光与物质相互作用的调控机理、量子光辐射相干控制、增强的非线性光学新特性,而且可以为将来新型纳米量子器件的研发提供一定的理论依据。

中文关键词: 量子光学;腔量子电动力学;耦合波导;高精密测量;光力学系统

英文摘要: It is well-known that, quantum system in the strong-coupling regime exhibits many unique physical properties. On the one hand, such a strong-coupling condition is easy to be achieved in solid-state optical microcavities and microcavity arrays due to high quality factor and small mode volume except for easy design, control, and integration advantages, the study of optical microcavities and cavity arrays in the ultra-strong coupling regime has been a hot subject. On the other hand, the observed nonlinear optical effects can be achieved at a single-photon level in the strong-coupling regime, which can make higher-order harmonics and chaos possible. In this regard, making use of quantum optics, nonlinear optical and solid-material scientific principles, our project studies mainly the influences of enhanced optical nonlinearities on the generation, conversion, and squeezing of optical higher-order harmonics as well as their micro-mechanisms. At the same time, the project also explores some new schemes and designs new quantum optoelectronic devices to realize chaos via the strong photon-electron coupling in optical microcavities and cavity arrays. These studies not only helps to understand and master the control micro-mechanism between light-matter interaction in the confined quantum systems, quantum coherent control of optical radiation and the enhanced nonlinear optical new features, but also providing the theoretical basis and reference for the research and development of new nano-quantum solid devices.

英文关键词: Quantum Optics;Cavity Quantum Electrodynamics;Coupled Waveguide;High Precision Measurement;Optomechanical System

成为VIP会员查看完整内容
0

相关内容

MIT设计深度学习框架登Nature封面,预测非编码区DNA突变
专知会员服务
15+阅读 · 2022年3月18日
混合增强视觉认知架构及其关键技术进展
专知会员服务
42+阅读 · 2021年11月20日
【经典书】图论,322页pdf
专知会员服务
123+阅读 · 2021年10月14日
《概率统计及其在计算中的应用》书册,384页pdf
专知会员服务
46+阅读 · 2021年1月7日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
31+阅读 · 2020年12月14日
专知会员服务
22+阅读 · 2020年9月14日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
小芯片大安全:数字隔离器的前世今生
中国科学院自动化研究所
0+阅读 · 2021年3月16日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Verified Compilation of Quantum Oracles
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月16日
Arxiv
14+阅读 · 2021年6月30日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Arxiv
25+阅读 · 2018年1月24日
小贴士
相关VIP内容
MIT设计深度学习框架登Nature封面,预测非编码区DNA突变
专知会员服务
15+阅读 · 2022年3月18日
混合增强视觉认知架构及其关键技术进展
专知会员服务
42+阅读 · 2021年11月20日
【经典书】图论,322页pdf
专知会员服务
123+阅读 · 2021年10月14日
《概率统计及其在计算中的应用》书册,384页pdf
专知会员服务
46+阅读 · 2021年1月7日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
31+阅读 · 2020年12月14日
专知会员服务
22+阅读 · 2020年9月14日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
Verified Compilation of Quantum Oracles
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月16日
Arxiv
14+阅读 · 2021年6月30日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Arxiv
25+阅读 · 2018年1月24日
微信扫码咨询专知VIP会员