Deep learning can promote the mammography-based computer-aided diagnosis (CAD) for breast cancers, but it generally suffers from the small size sample problem. In this work, a task-driven self-supervised bi-channel networks (TSBNL) framework is proposed to improve the performance of classification network with limited mammograms. In particular, a new gray-scale image mapping (GSIM) task for image restoration is designed as the pretext task to improve discriminate feature representation with label information of mammograms. The TSBNL then innovatively integrates this image restoration network and the downstream classification network into a unified SSL framework, and transfers the knowledge from the pretext network to the classification network with improved diagnostic accuracy. The proposed algorithm is evaluated on a public INbreast mammogram dataset. The experimental results indicate that it outperforms the conventional SSL algorithms for diagnosis of breast cancers with limited samples.


翻译:深层学习可以促进乳癌的乳房X线摄影计算机辅助诊断(CAD),但通常会受到规模小的抽样问题的影响。在这项工作中,提议了一个由任务驱动的自我监督双通道网络(TSBNL)框架,以提高使用有限的乳房X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线的图像恢复任务,作为改善乳房X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxmlxmlxmlxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
【阿里巴巴-CVPR2020】频域学习,Learning in the Frequency Domain
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员