From designing architected materials to connecting mechanical behavior across scales, computational modeling is a critical tool in solid mechanics. Recently, there has been a growing interest in using machine learning to reduce the computational cost of physics-based simulations. Notably, while machine learning approaches that rely on Graph Neural Networks (GNNs) have shown success in learning mechanics, the performance of GNNs has yet to be investigated on a myriad of solid mechanics problems. In this work, we examine the ability of GNNs to predict a fundamental aspect of mechanically driven emergent behavior: the connection between a column's geometric structure and the direction that it buckles. To accomplish this, we introduce the Asymmetric Buckling Columns (ABC) dataset, a dataset comprised of three sub-datasets of asymmetric and heterogeneous column geometries where the goal is to classify the direction of symmetry breaking (left or right) under compression after the onset of instability. Because of complex local geometry, the "image-like" data representations required for implementing standard convolutional neural network based metamodels are not ideal, thus motivating the use of GNNs. In addition to investigating GNN model architecture, we study the effect of different input data representation approaches, data augmentation, and combining multiple models as an ensemble. While we were able to obtain good results, we also showed that predicting solid mechanics based emergent behavior is non-trivial. Because both our model implementation and dataset are distributed under open-source licenses, we hope that future researchers can build on our work to create enhanced mechanics-specific machine learning pipelines for capturing the behavior of complex geometric structures.


翻译:从设计建筑材料到跨尺度的机械行为,计算模型是实实在在机械学中的一个关键工具。最近,人们越来越有兴趣使用机器学习来降低物理模拟的计算成本。值得注意的是,尽管依赖图形神经网络(GNNS)的机器学习方法在学习机械学方面表现出成功,但GNNs的性能还没有在无数的固体机械问题上进行调查。在这项工作中,我们研究了GNNs预测机械驱动的突发行为的基本方面的能力:一列的几何结构与它连接的方向之间的联系。为了完成这一任务,我们引入了Asymloging列(ABC)的数据集,这是一个由三个不对称和混杂列的子数据集组成的数据集,目的是在不稳定开始后将对断裂方向(左或右)进行分类。由于复杂的本地测算模型,“模拟式”数据表显示实施标准进化的神经网络基元模型下的元模型是不理想的。因此,我们引入了“Asymlogical 列列列列列列列(ABC) 数据集,从而将GNNNUR 的模型的模型的模型整合结果作为我们的数据模型的模型的模型的模型的模型的模型的模型, 显示了我们获取结果。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Graphical Evidence
Arxiv
0+阅读 · 2022年6月22日
Arxiv
0+阅读 · 2022年6月22日
Arxiv
0+阅读 · 2022年6月17日
Arxiv
22+阅读 · 2022年3月31日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关论文
Graphical Evidence
Arxiv
0+阅读 · 2022年6月22日
Arxiv
0+阅读 · 2022年6月22日
Arxiv
0+阅读 · 2022年6月17日
Arxiv
22+阅读 · 2022年3月31日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
17+阅读 · 2019年3月28日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员