We study the problem of registration for medical CT images from a novel perspective -- the sensitivity to degree of deformations in CT images. Although some learning-based methods have shown success in terms of average accuracy, their ability to handle regions with local large deformation (LLD) may significantly decrease compared to dealing with regions with minor deformation. This motivates our research into this issue. Two main causes of LLDs are organ motion and changes in tissue structure, with the latter often being a long-term process. In this paper, we propose a novel registration model called Cascade-Dilation Inter-Layer Differential Network (CDIDN), which exhibits both high deformation impedance capability (DIC) and accuracy. CDIDN improves its resilience to LLDs in CT images by enhancing LLDs in the displacement field (DF). It uses a feature-based progressive decomposition of LLDs, blending feature flows of different levels into a main flow in a top-down manner. It leverages Inter-Layer Differential Module (IDM) at each level to locally refine the main flow and globally smooth the feature flow, and also integrates feature velocity fields that can effectively handle feature deformations of various degrees. We assess CDIDN using lungs as representative organs with large deformation. Our findings show that IDM significantly enhances LLDs of the DF, by which improves the DIC and accuracy of the model. Compared with other outstanding learning-based methods, CDIDN exhibits the best DIC and excellent accuracy. Based on vessel enhancement and enhanced LLDs of the DF, we propose a novel method to accurately track the appearance, disappearance, enlargement, and shrinkage of pulmonary lesions, which effectively addresses detection of early lesions and peripheral lung lesions, issues of false enlargement, false shrinkage, and mutilation of lesions.


翻译:暂无翻译

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
75+阅读 · 2022年6月28日
专知会员服务
32+阅读 · 2021年6月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年7月3日
Arxiv
0+阅读 · 2023年7月1日
Arxiv
0+阅读 · 2023年6月30日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员