The Three-River-Source region is a highly significant natural reserve in China that harbors a plethora of untamed botanical resources. To meet the practical requirements of botanical research and intelligent plant management, we construct a large-scale dataset for Plant detection in the Three-River-Source region (PTRS). This dataset comprises 6965 high-resolution images of 2160*3840 pixels, captured by diverse sensors and platforms, and featuring objects of varying shapes and sizes. Subsequently, a team of botanical image interpretation experts annotated these images with 21 commonly occurring object categories. The fully annotated PTRS images contain 122, 300 instances of plant leaves, each labeled by a horizontal rectangle. The PTRS presents us with challenges such as dense occlusion, varying leaf resolutions, and high feature similarity among plants, prompting us to develop a novel object detection network named PlantDet. This network employs a window-based efficient self-attention module (ST block) to generate robust feature representation at multiple scales, improving the detection efficiency for small and densely-occluded objects. Our experimental results validate the efficacy of our proposed plant detection benchmark, with a precision of 88.1%, a mean average precision (mAP) of 77.6%, and a higher recall compared to the baseline. Additionally, our method effectively overcomes the issue of missing small objects. We intend to share our data and code with interested parties to advance further research in this field.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
58+阅读 · 2021年11月15日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员